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Recap

 So far, we talked about linear regression, shallow neural networks and
deep neural networks

* Each have parameters, ¢, that we want to choose for a best possible
mapping between input and output training data

* A loss function or cost function, L[¢], returns a single number that
describes a mismatch between f[x;, ¢]and the ground truth outputs,
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We need to find a loss function that works with...



Univariate and Multivariate Regression
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But First, A Digression...

e The book gives a unique, theoretically grounded approach to picking loss
functions.

e Wil defer that five minutes to talk about an example from my industry
experience.



A long time ago in an internet far, far away...



Circa 2005

e Advertisers were starting to move beyond banner ads to monetize the Internet
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My Past Life as a Research Scientist at a Tech Startup

My original task:

e Figure out how Google models ad click rates
o Google originally sorted ads purely on expected cost per impression.
o They said they have a model for ad click rates even with sparse data.
o  Slightly simplified sort:
m (our bid) * (estimated ad click rate)
o  We were running a long tailed keyword campaign so ~everything controlled by their model.



My Past Life as a Research Scientist at a Tech Startup

e Predict our expect revenue if someone clicks on a particular keyword
o Use this to control our bidding.
o  We started with simple strategies like “bid 50% of our expected revenue”
o BTW we have 100K keywords, only 1K have clicks



The Linear Traffic Curve Model (RIP 2009)

One of my coworkers observed the following...

e The clicks that we get on our ads are surprisingly linear in our cost per click.
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The Linear Traffic Curve Model (RIP 2009)

One of my coworkers observed the following...

e The clicks that we get on our ads are surprisingly linear in our cost per click.
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The Linear Traffic Curve Model (RIP 2009)

One of my coworkers observed the following...

e The clicks that we get on our ads are surprisingly linear in our cost per click.

o Clicks o< cost per click 1000 Optimizing Profit with the Linear Clicks Model
o Revenue o< cost per click — revenue
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e \We can solve for max profit!
o  Simple analytical solution
o Bid up to 50% margins
o So (cost per click) = 72 (revenue per click)
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The Linear Traffic Curve Model (RIP 2009)

One of my coworkers observed the following...

e \We can solve for max profit!

o  Simple analytical solution 1000 Optimizing Profit with the Linear Clicks Model
o Bid up to 50% margins — revenue
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The Linear Traffic Curve Model (RIP 2009)

One of my coworkers observed the following...

We can solve for max profit!

(@)

(@)

(@)

Simple analytical solution
Bid up to 50% margins
So (cost per click) = %2 (revenue per click)

If we bid differently,

(@)

(@)

Profit drops quadratically from optimal point.

This is an L2 loss!

In practice, we bid to 40% margins.
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Returning to the modern day...



So far, we thought about
fitting a model to the data...
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Alternatively, we can think about
fitting a probability model to the

data.

Why?

Pr(y|x)
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Alternatively, we can think about
fitting a probability model to the

data.
Pr(y|x)

Why?

Because this provides a framework
to build loss functions for other

prediction types...

... and justifies least squares for
real-valued regression models.



Brief Probability Review

* Random variables, e.g. x and y

* Pr(x) is a probability distribution over x
c0<Pr(x)<1

* [ Pr(x)dx =1 or ¥, Pr(x;) =1

* Pr(x,y) = Pr(x) - Pr(y) when x and y are independent
* Pr(x |y) Pr(y) = Pr(x,y) = Pr(y | x) Pr(x)

* And...



Joint and Marginal Probability Distributions

Joint Distribution

a) Pr(z,y) c) Pr(y)

0.0

-1.0

Marginal distribution

Pr(y) = f Pr(x,y)dx

0.0

0.2

Marginal distribution

Pr(x) = f Pr(x,y)dy
y



Conditional Probabilities
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. (z|ly=3.0)
0.0
7.0 0.0 7.0
Pr(z|ly=-1.0)
0.2
0.0

7.0 0.0 7.0

fPr(x|y=3.0)dx=1

X

fPr(x ly=-1.0)dx =1
X



2.0
_ ©
| (] o © ©
° o] (o] © e
Q.." 00000%@0000%00
E | 0o o °
| ot
[ &
I 0?2
10 ©
0.0 N
; Age, 1 18
Pr{z
- {y)
Continuous ,
Yy
Pr(y|x) -

0.0



18

2.0
= | e
— 0® o
IR
=3 I
I Og
1o
0.0
0
2.0
Continuous ]
’y_

Pr(y|x)

0.0



2.0
_ (o]
i © o] . @ o0 ’
> R A
] 0© @
W 0 e
o | e
L 0l
J0
0.0 N
; Age, 1 18
Pr{y)
2.0
Continuous |
Pr(y|x) g

0.0



2.0
_ ©
i ° © © OO @ o0 °
— e ° | e “o
@\: | e <98(% o % o
E o °% ’
2o e o
QO @
T |.e
0O
0.0 U
. Age, 1 18
- Pr(y)
Continuous -
Pr(y|x) Y
0.0




2.0
_ o
| (9 o (5] ©
o © o0
< | °© 9 oo o 0o
] ° ° o.8° o B
E o OO@ ’
&1 e o
ol e
T |.e
10
0.0
0
Continuous

Pr(y|x)

0.0



(e

Spam

Number of words, «

10 OO O (o] © Q- O OO0 00O ©
Not spam
Q OQL- 000 CoOEX 000 (e e
2000



(e

Discrete

Pr(y|x)

Spam
O O

D- O (o] e} Q- O OO0 00O ©
Not spam
o} [olv (o l® ¢ o} CO0EX 0 00 Q00
2000

Number of words, «
Pr(y)




Spam

]_-OOCDOO o] e} O O OO0 00O ©

=N

Not spam

O' (o} oL oo Qo0 O 00 QO O

0 Number of words, « 2000
Pr(y)
Discrete ul

Pr(y|x) 0




Spam

]_-OCXDOO o o O O OO0 00O ©

Py

Not spam

R o [ole s B ee o} CoOL O 00 00 0

0 Number of words, « 2000
Priy)
Discrete yl

Pr(y|x) 0




Discrete
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Loss function
® Training dataset of 7 pairs of input/output examples:

{Xia YZ}qj:1

® |_oss function or cost function measures how bad model is:

L ¢7 f[X7 ¢]7 {X’ia Yi iI:l

S~—— ~~ d
model train data




Loss function

® Training dataset of 7 pairs of input/output examples:

{Xia Yi}r{:1

® |_oss function or cost function measures how bad model is:

or for short;

L [¢ “ Returns a scalar that is smaller

when model maps inputs to
outputs better



Training

® Loss function:

L [¢ Returns a scalar that is smaller

when model maps inputs to

. o outputs better
® Find the parameters that minimize the loss:

A

¢ = arg;nin {L [cb]}



Example: 1D Linear regression loss function

Output, y
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0.0

Loss, L = 7.11
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Input, x

Loss function:

(Elzi, @] — yi)*

]~

Li¢] =

=1

I
= Z(Qbo + 1y — yi)g
=1



Example: 1D Linear regression training

b)

0.0
1.0 2.0 0.0

Intercept, ¢o

This technique is known as gradient descent

2.0



Loss functions

® Maximum likelihood

® Recipe for loss functions

® Example 1: univariate regression

® Example 2: binary classification

® Example 3: multiclass classification
® Other types of data

® Multiple outputs

® Cross entropy



Maximum Likelihood Estimation

e In statistics, maximum likelihood estimation (MLE) is a method of estimating
the parameters of an assumed probability distribution, given some observed
data.

e This is achieved by maximizing a likelihood function so that, under the
assumed statistical model, the observed data is most probable.



Maximum Likelihood Estimation

e In statistics, maximum likelihood estimation (MLE) is a method of estimating
the parameters of an assumed probability distribution, given some observed
data.

e This is achieved by maximizing a likelihood function so that, under the
assumed statistical model, the observed data is most probable.

e Does not take into account prior beliefs or likelihoods of particular parameter

settings.
e Won't talk (much) about Bayesian improvements.



How do we do this?

e Model predicts output y given input x



How do we do this?
et orad o



How do we do this?
oo o

e Model predicts a conditional probability distribution:
Pr(y|x)

over outputs y given inputs x.

e Define and minimize a loss function that makes the outputs have high
probability



How can a model predict a probability distribution?
Parametric Models

1. Pick a known distribution (e.g., normal distribution) to model output y with
parameters g

e.g., the normal distribution 0 — {M 02}

H

Pr(y)

v
2. Use model to predict parameters @ of probability distribution



Maximize the joint, conditional probability

e We know we picked a good model and the right parameters when the joint
conditional probability is high for the observed (e.g. training) data.

Pr(yyi, Vo, w0, Vil X1, X2, oor)y X1)



Two simplifying assumptions

ldentically distributed (the form of
the probably distribution is the same
for each input/output pair)

A
| 1

I
Pr(y1, ¥2, oo Y1l X1, X9, 0, x1) = 1_[ Pr(y;| x;)
i=1

\ J
|

Independent

Independent and identically distributed (i.i.d)



Maximum likelihood criterion

c}ﬁ = argmax
@

= argmax
®

= argmax
@

1
1[ Priyilx:)
[ 1=1

.
11 Pr(vil6:)
=1

[ 3=1

6;are the parameters of the

/ probability distribution

¢ are the parameters of the

I
H Pr(yilf{x;, ¢])] ¢ neural network, e.g.

0; = f[x;, ]

When we consider this probability as a function of the
parameters ¢, we call it a likelihood



Problem:

-7 -

¢ = argmax Pr(y;|flx;, ¢])
P 1

RES i

® The terms in this product might all be small

® The product might get so small that we can’t easily represent it in fixed
precision arithmetic



Log and exp functions

® | 0g '5_

* Two rules:

loglexplz]| = 2 logla - b] = log|a] + log[b]



The log function is monotonic

a) b) c)
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Maximum of the logarithm of a function is in the same place as maximum of function



Maximum log likelihood

A

I
¢ = argmax H Pr(y;|[flx;, qb])}

A
H Pr(y;|f[x;, ¢D} }

= argmax |log
i=1

¢

= arg(rpnax _i log [P r(yilflx, Qb])ﬂ

Now it’s a sum of terms, so doesn’t matter so much if the terms are small



Minimizing negative log likelihood

® By convention, we minimize things (i.e., a loss)

¢ = argmax {Z]: log [P r(yilf[x, ¢])u

@ i=1

¢ i=1

— argmin {— XI: log [P?“(Yi|f[xv:a (15])}}

= arg;nin [L [d)]}



Inference

But now we predict a probability distribution

* We need an actual prediction (point estimate)
* Find the peak of the probability distribution (i.e., mean for normal)

y = A= argmax[Pr(y|flx,¢[)]] =
y




Why Peak Probability?

e \We started from maximum likelihood...

o Picked parameters maximizing likelihood of training data
o Now pick maximum likelihood output given our input data.

e Aligns with mean and median for normal distributions.

Not always the right answer if we are not starting from maximum likelihood.

e If you start from your own loss function...
e And particularly if that loss function is asymmetric...



Loss functions

® Maximum likelihood

® Recipe for loss functions

® Example 1: univariate regression

® Example 2: binary classification

® Example 3: multiclass classification
® Other types of data

® Multiple outputs

® Cross entropy



Recipe for loss functions

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.



Recipe for loss functions

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.

2. Set the machine learning model f[x, ¢] to predict one or more of these parameters
50 0 = f[x, @] and Pr(y|8) = Pr(y|fix, ¢])



Recipe for loss functions

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.

2. Set the machine learning model f]x, ¢| to predict one or more of these parameters
so 8 = f[x, @] and Pr(y|0) = Pr(y|flx, ¢]).

3. To train the model, find the network parameters qAb that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

4
¢ = arg;nin [L[@]] = arg;nin [— ; log [Pr(y”f[xi, qb])}] . (5.7)



Recipe for loss functions

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.

2. Set the machine learning model f]x, ¢| to predict one or more of these parameters
so 8 = f[x, @] and Pr(y|0) = Pr(y|flx, ¢]).

3. To train the model, find the network parameters & that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

&
¢ = arg;nm [L[o]] = argénm { ; log [Pr(y”f[xi, qb])}] : (5.7)

4. To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x, ¢]) or the maximum of this distribution.



Let’'s apply this recipe to

® Example 1: Real valued univariate regression
® Example 2: Binary Classification

® Example 3: Multiclass Classification



Loss functions

® Maximum likelihood

® Recipe for loss functions

® Example 1: univariate regression

® Example 2: binary classification

® Example 3: multiclass classification
® Other types of data

® Multiple outputs

® Cross entropy



Example 1: univariate regression

Real world input

Model

6000 square feet,
4 bedroomes,
previously sold for

$235K in 2005,
1 parking spot.

—

Input

6000

235
2005

Model

Model
output

Supervised learning
model

— [340}—>

Real world output

Predicted price
is $340k




Example 1: univariate regression

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.

® Predict scalar output: ¥ € R . |
® Sensible probability distribution: | 7=03
o Normal distribution Y j \
N f |
wowr] S| |
1 Y — ”
P 2y _ N P 0.51
r(?J‘Ua o ) 27’(’0’2 exXp [ 20.2 ]

0.0 -
-3




Example 1: univariate regression

2. Set the machine learning model f]x, ¢| to predict one or more of these parameters

so 8 = f[x, @] and Pr(y|0) = Pr(y|flx, ¢]).

1 (y — p)?
Pr 07 = eXp [_
(?JW ) Vo2 202 In this case,

/ just the mean
o (y R f[Xv ¢])2
2mo? =P 20

- i

Pr(y|flx, ¢],0°) =
\ )
Y

Just learn the mean, u, and assume the variance is fixed,.



Example 1: univariate regression

3. To train the model, find the network parameters ¢ that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

L{¢] = — Zlog [Pr(yi|f[x7;, @), 02)]

1=1

S [ o[-l







i —;[:5-, ¢1>2m

log|a - b] = log|a| + log|b]



b = argmin |~ > log |~ exp [_(yi—g[x;,cbwm
| 4 LV o o
1

_ argmin :_ > log \/W +log [eXp [_ (y: —;5;,05])2”]
1

= argmin | — lo - - _ (yi — flxi, 9))*
I Z © RY | 202 ]




¢ = argmin
¢

= argmin
®

= argmin
®

| V2mo? +log [exp [_ 202
1] B (yz — f[xia¢])2] 10

(y; — flxi, W”]

|V 2mo2 oxP [_ 202

(y: — flxq, ¢])2

I

| V27mo2? ] 202
Just a constant )
offset _
0 +—
-10

T
0]

10



¢ = argmin
= argmin
= argmin

= argmin




¢ = argmin
¢

= argmin
®

= argmin
@

= argmin
®

I _ -
1 (yi — f[xi, #])°
_ izzllog Wi + log lexp [— 57
I _
B Z log 1 (v — flxs, 9])?
P | V2702 202
I
B Z (ys — fxq, ¢])2]
2
i1 20 E
f o0
Just dividing by a >

‘Zk’g: L [_(yi—g[:;,cb])j”

positive constant

10

I

T
0]



¢ = argmin _Zlog- : P [_(yi_ﬂXi’@P”]

gt |3 o[ Hoglexp[_@i—f[xi,cb])?m

i I [ 1 1 i—f ia¢])2
= argmin —Zlog N W x ]

. [ (y, - f[Xz’, ¢])2
= argmin | — Z - 20-2
¢ | =1
- 7 ;
. . . th . Least
= arg;mn ;(y xi, 9]) squares!



Least squares Negative log likelihood

2l = —6.57

2, 2 Ays — flvi #1)° — 019 A =¥, log [Priulflz.. ¢].

Cutput. ¥
e
\

Irr(”flf[ll{} (j)] ) “T‘j '\

Priy: f[“'j‘{i: (f)] g”)

ool ¢+
0.0 1.0 20
Input, =

ool
ol 1.0 24
Input, «



Least squares

b) Sl — s, @D — 10.22

00 | l 1o ' | C2g
Input. x

Maximum likelihood

d) — 37, log [Pr{y,[f[z.. ¢]. %] = 197.37

00 T 1o 2.8
Input, «



Example 1: univariate regression

4. To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x, ¢]) or the maximum of this distribution.

Full distribution:
Pr(ylfx, @], 0°) =

(y —flx, ¢])2] .

Pr(y)

Max probability:




Estimating variance

® Perhaps surprisingly, the variance term disappeared:

/ 1 ’i_fx'ia 2
b = arguin _214 1 [_w fx,.¢) m

2mo=

|

= argiin Z(yvﬂ — f[xi, ¢]) 2]

¢ i1



Estimating variance

e But we could learn it during training:

: I ! (y: = fx, ¢])?
A2 . o < . 1 19
¢,0° = arqg;,l;nzm [ Zz:;log [ s exp [ 552 ”

* Do gradient descent on both model parameters, ¢, and the variance,

0.2

JL and oL
7)) 00?2



Heteroscedastic regression

e We were assuming that the noise g2 is the same everywhere
(homoscedastic).

 But we could make the noise a function of the data x.

* Build a model with two outputs:
M= f1 [X7 ¢]
02 — f2 [Xa ¢]2

/ = argmin | — I o) 1 _ (yi_fl[xia¢])2
P [Zlg[ﬂwfﬂxiw] i 6 ]




Heteroscedastic regression




Example 1: Univariate Regression Takeaways

e Least squares loss is a good choice assuming normal distribution
e The best prediction is the predicted mean
e We can also estimate global or local variance



Example 1: Univariate Regression Takeaways

e Least squares loss is a good choice assuming normal distribution
e The best prediction is the predicted mean
e We can also estimate global or local variance

BTW the Central Limit Theorem suggests we will see lots of normal distributions...



Loss functions

Maximum likelihood

Recipe for loss functions

Example 1: univariate regression
Example 2. binary classification
Example 3: multiclass classification
Other types of data

Multiple outputs

Cross entropy



Example 2: binary classification

Real world input

“The steak was terrible,
the salad was rotten, and
the soup tasted like socks”

Model
Input

[8672]
8194
9804

—> (8634

8672

Model

Model
output

Supervised learning
model

| 'LMB ’

Real world output

Negative

e Goal: predict which of two classes y € {0, 1} the input x belongs to




Example 2: binary classification

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.

e Domain: y € {0,1} |
e Bernoulli distribution |
* One parameter A €[0,1]

1—A y =20

Pr(y|\) = {A y— 1

Pr(y|A) = (1= A)""% -\



Example 2: binary classification

2. Set the machine learning model f]x, ¢| to predict one or more of these parameters

so 0 = f[x, ¢] and Pr(y|@) = Pr(y|flx, ¢]).

Problem:

* Qutput of neural network can be anything
* Parameter A €[0,1]

Solution:

* Pass through function that maps
“anything” to [0,1]



Example 2: binary classification

2. Set the machine learning model f]x, ¢| to predict one or more of these parameters

so 0 = f[x, ¢] and Pr(y|@) = Pr(y|flx, ¢]).

®roblem:

* Qutput of neural network can be anything 1.0

1

* Parameter A €[0,1] T Foxpl—2],
Solution: 80

* Pass through logistic sigmoid function that ?

maps “anything to [0,1]:
1 007¢ 0 5

siglz] = T oxpi—7]



Example 2: binary classification

2. Set the machine learning model f]x, ¢| to predict one or more of these parameters

so 0 = f[x, ¢] and Pr(y|@) = Pr(y|flx, ¢]).
Pr(y[A) = (1= X)"7 -\

Pr(y|x) = (1 — siglf[x|¢]])" ¥ - sig[f[x|#])"



Example 2: binary classification

a) 40 b) c) 10
_ | 3
S O
500 \?o.sj
] L]
| sig [flz, @] j 1:-)\
o0 20 0,10 20
Input, x / Input, =




Example 2: binary classification

3. To train the model, find the network parameters ¢ that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

1
¢ = arg;nm [L[®]] = arg;mn [— ; log [Pr(yi|f[xi, gb])}] : (5.7)

Pr(ylx) = (1 — siglf[x|¢]])" ¥ - sig[f[x|#]}"

MN

—(1 —ys)log [1 — sig[f[x;[p]]] — v log [sig[f[x:[]],



Example 2: binary classification

4. To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x, ¢]) or the maximum of this distribution.

a) 4.0 b) c) 10
s B
- | 1 A | y‘
=00 ; =05 ‘
=y &
R
404 ¢ ¢ N S M SN A
0.0 1.0 2.0 0% 10 2.0
Input, = Input, =

Choose y=1 where A is greater than 0.5, otherwise 0
And we get a probability estimate!



Example 2: Binary Classification Takeaways

e Binary cross entropy loss as the loss function
e Threshold to get prediction
e \We also get a probability or “confidence value”

106



Loss functions

Maximum likelihood

Recipe for loss functions

Example 1: univariate regression
Example 2: binary classification
Example 3: multiclass classification
Other types of data

Multiple outputs

Cross entropy



Example 3: multiclass classification

Model
iInput

Real world input

[124]
140
156

142
157

Goal: predict which of K classes y € {1,2,...

Model

128 >

Supervised learning
model

Model Real world output
output

0.89 i
R -, Bicycle

, K lthe input x belongs to



Example 3: multiclass classification

1. Choose a suitable probability distribution Pr(y|@) that is defined over the domain
of the predictions y and has distribution parameters 6.

* Domain: y € {1,2,..., K} 0.5
 Categorical distribution

* K parameters 4;, €[0,1]
e Sum of all parameters =1

Pr(z)




Example 3: multiclass classification

2. Set the machine learning model f[x, ¢| to predict one or more of these parameters

so 8 = f[x, ¢] and Pr(y|0) = Pr(y|flx, ¢]).

Problem:

e Output of neural network can be anything
* Parameters A;, €[0,1], sum to one

exp|zk]

K
D h—1 €XD|2k/|

Solution: softmaxy,|z] =

* Pass through function that maps “anything”
to [0,1], sum to one

Pr(y = k|x) = softmaxy[f[x, ¢



Example 3: multiclass classification

a) 5.0 b) 10
: A1
| 5
oo I
> 0.0 0.5
S
- ] 3
g
: f3[x, @] : e
-5.0 I S S Ty 0.0 : — y :
0.0 1.0 2.0 0.0 1.0 2.0
Input, = softmax [f[z, ¢]] Input, =

Pr(y = k|x) = softmaxy[f|x, ¢|



Example 3: multiclass classification

3. To train the model, find the network parameters ¢ that minimize the negative
log-likelihood loss function over the training dataset pairs {x;,y;}:

I
& = arg;nin [L[¢]] = arg;nin [— Z log [Pr(yi|f[xi, qb])}] : (5.7)
i=1
. softmaxy|z] = explz]
Li¢] = — 3" log [softmax,, [£[x:, @] = e
=1

k=1



Example 3: multiclass classification

4. To perform inference for a new test example x, return either the full distribu-
tion Pr(y|f[x, ¢]) or the maximum of this distribution.

Q
~—
ol
o
O
~—
o

Pr(y = klx)

1.0

o

(9,1
o
o, . . ..
o
=)
(=)

1.0 2.0 1.0 2.0

Input, = Input, = \

&

Choose the class with the largest probability
We also get probability or “confidence” !—\m




Loss functions

Maximum likelihood

Recipe for loss functions

Example 1: univariate regression
Example 2: binary classification
Example 3: multiclass classification
Other types of data

Multiple outputs

Cross entropy



Other
data types

Data Type Domain Distribution Use

univariate, continuous, y€eR Laplace robust

unbounded or t-distribution  regression

univariate, continuous, y €RT exponential predicting
bounded below or gamma magnitude

multivariate, continuous, y € R¥ multivariate multivariate

unbounded normal regression

univariate, discrete, y € {0,1} Bernoulli binary

binary classification

univariate, discrete, W iE 01,23, s Poisson predicting

bounded below event counts

Figure 5.11 Distributions for loss functions for different prediction types.



Other Distributions

Gaussian

Gaussian Function

Laplace

Laplace Distribution

Mixture of Gaussians

Mixture of Gaussians

Gamm

Gamma Distribution

0.40 0.5 a
05 035
0.35
0.4 0.30
0.30 04
025
025 0s
23 0.20
> 020 > >
015
015 L 02
0.10
0.10
01 01
0.05
0.05
0.00 0.0 0.0 0.00
-4 -2 0 2 4 4 2 0 2 4 -100 -7.5 =50  -25 0.0 25 5.0 75 10.0 0 2 4 6 8 10

yE R Régression

Beta

Beta Distribution

0.0 0.2 0.4 0.6 08

y € [0,1]Predi<;t Proportions

1.0

y € R Robust Regression y € R Multimodal Regression

Von Mises

von Mises Distribution

y € R* Predict Magnitude

Poisson

Histogram of Poisson Distribution

-n -n2 0 2 n 3n2 2n 0o 1

y € (—m, m|Predict Directions

3

4 5 6 7 8 9

10 1 12 13 14
Value

y € [0,1,2, ... ]Predict Event Counts




Loss functions

Maximum likelihood

Recipe for loss functions

Example 1: univariate regression
Example 2: binary classification
Example 3: multiclass classification
Other types of data

Multiple outputs

Cross entropy

117



Multiple outputs

e Treat each output Yd as independent:
Pr(y[fix;, ¢]) = [] Pryalfalxi, ])
d

e Negative log likelihood becomes sum of terms:

L[¢ Zlog[Pr y |[f[x; } ZZlog[P’r Yid|fa[Xi, ¢])

=1 d

118



Example 4: multivariate regression

Real world input Model Model Model Real world output
Input output
Cl AN - 0]

= i/ \‘Qb}_l{{j T Freezing point

~ N N— L, | & —{_,1.2'9}—» is -12.9°C
H ) 17 56.4 Boiling point

“’—H/ } Supervised learning is 56.4°C

model 19




Example 4: multivariate regression

* Goal: to predict a multivariate target y € RPe
 Solution treat each dimension independently

D,
Pr(ylp,0®) = || Pryalpa, o®)

Q.
I
-

1 (ya — pa)?
exp |—
V2mo? 202

* Make network with D, outputs to predict means

=

=y
|

(ya — falx, CP])Q]

Pr(ylflx, ooz P [— 5o

27m

||’:]

120



Example 4: multivariate regression

e \What if the outputs vary in magnitude

o E.g., predict weight in kilos and height in meters
o One dimension has much bigger numbers than others

e Could learn a separate variance for each...
e ...orrescale before training, and then rescale output in opposite way

121



Loss functions

Maximum likelihood

Recipe for loss functions

Example 1: univariate regression
Example 2: binary classification
Example 3: multiclass classification
Other types of data

Multiple outputs

Cross entropy
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Information Theory and Entropy

® Claude Shannon: the "father of information theory,"
was an American mathematician, electrical engineer,
and cryptographer

® Theory of Communication: In his landmark 1948
aper, "A Mathematical Theory of Communication,"
hannon introduced a formal framework for the

transmission, processing, and storage of information.

® Information Theory: Quantified information, allowing
for the measurement of information content in
messages, which is crucial for data compression,
error detection and correction, and more.

® Concept of Information Entropy: introduced
entropy as a measure of the uncertainty or o
randomness in a set of_gossmle messages, providing
a limit on the best possible lossless compression of
any communication.

HG) = = ) P(x) logy (P(x))

The Mathematical Theory
Of Communication

By CLAUDE E. SHANNON

OF ILLINC
B9 419



Entropy for a Binary Event  x € {0,1}

Information Entropy

H(p)

124

H(x) = - ) P(x) logo(P(x)) = —plogz(») — (1 - p) logz(1 —p)



Cross Entropy — Concept from Information Theory

Measures the difference between two probability distributions: the true distribution of the labels and
the predicted distribution of the labels by a model.

a) Empirical data distribution b) 0.2 Model distribution

™~ ®

el 3

S; V § 0.1
Ay

10 0 10 D'O-IO 105 0 M €
Z Z
KLgll) = [ a2 logla(2)dz — [ a()loglp()]d:

-- @ measure between probability distributions



Cross Entropy — Concept from Information Theory

eFor discrete distributions, the cross-entropy between two

distributions p and g over the same underlying set of events is
defined as:

H(p,q) = —Xp(x) log q(x)

Here, p(x) is the true probability of an event x, and g(x) is the
estimated probability of the same event according to the model.

For instance, in binary classification:
H(p,q) = —[y log(®) + (1 — y)log(%s — J)

Here, y is the true label (0 or 1), and ¥ is the predicted probability of
the class being 1.



Recap

e Reconsidered loss functions as fitting a parametric probability model

e Introduced Maximum Likelihood criterion for finding parameters to making the
training data most probably under that model

e Introduced a 4-step recipe for (1) picking a suitable parametric probability
distribution, (2) defining the model to pick one or more of the parameters, (3)
training the model and (4) doing inference

e Derived loss functions for univariate regression, binary and multiclass
classification

e Briefly reviewed parametric probability models for other types of data

e Discussed how this is the same as Cross Entropy from Information Theory
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Minimizing Negative Log Likelihood

”~

I
— I — l P i f i’
b arg;nml Z og[Pr(y;| flx ¢]>]]

= argmin|L[¢]|
¢

128



Recipe for loss functions

1.

2.

Choose a suitable probability distribution Pr(y|@) that is defined over
the domain of the predictions y and has distribution parameters 6.

Set the machine learning model f[x, ¢] to predict one or more of these
parameters so 8 = f[x, ¢] and Pr(y | f[x, ¢]).

To train the model, find the network parameters ¢ that minimize the
negative log-likelihood loss function over the training dataset pairs

xiyi}k:

I
$ = argmin[L [¢]] = argmin [—z log[Pr(y;| f[x;, )] ]
¢ ¢ = 129

To perform inference for a new test example x, return either the full
distribution Pr(y | f[x, ¢]) or the maximum of this distribution.



Next up

e Now let’s find the parameters that give the smallest loss
o Training the model
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Feedback?




