BOSTON **NIVERSITY**

Deep Learning for Data Science DS 542

Lecture 05 Loss Functions

Slides originally by Thomas Gardos. Images from [Understanding Deep Learning](https://udlbook.com) unless otherwise cited.

Recap

- So far, we talked about linear regression, shallow neural networks and deep neural networks
- Each have parameters, ϕ , that we want to choose for a *best possible* mapping between input and output training data
- A loss function or cost function, $L[\phi]$, returns a single number that describes a mismatch between $f[x_i, \phi]$ and the ground truth outputs, y_i .

We need to find a loss function that works with...

Univariate and Multivariate Regression

Binary Classification

Multiclass Classification

But First, A Digression…

- The book gives a unique, theoretically grounded approach to picking loss functions.
- Will defer that five minutes to talk about an example from my industry experience.

A long time ago in an internet far, far away…

Circa 2005

● Advertisers were starting to move beyond banner ads to monetize the Internet

Circa 2005

- Advertisers were starting to move beyond banner ads to monetize the Internet
- Search engines just starting to sell ads
	- Not this many yet
	- Unknown dynamics

(if you did not work at Yahoo or Google)

Arizona State University | Computer Science - BS Online

Earn Your Bachelor's Degree in Computer Science Taught by the Same Faculty as on Campus. Discover Opportunities to Make an Impact through Research and Special..

Sponsored

Purdue Globa

https://onlinedegrees.purdue.edu > computerscience > degree :

Purdue Global Online | Computer Science Degrees

Shape Your Future With an Online Computer Science Bachelor's from Purdue Global. Affordable Tuition and Flexible Programs to Fit Your Lifestyle and Budget. Learn More

Sponsored

Johns Hopkins University ₩

https://info.ep.ihu.edu > ihuonline > ihucompsci :

Online MS in Computer Science | Johns Hopkins Engineering

Complete your degree part-time & online while you work. Courses to fit your schedule. Increase your income-earning potential. Software developers are in high demand.

Sponsored

connect.northeastern.edu

https://connect.northeastern.edu > computer > engineering

Circa 2005

- Advertisers were starting to move beyond banner ads to monetize the Internet
- Search engines just starting to sell ads
	- Not this many yet
	- Unknown dynamics (if you did not work at Yahoo or Google)

Big questions

- How to advertise effectively here?
- What keywords to advertise on?
- How much to bid?

Arizona State University | Computer Science - BS Online

Earn Your Bachelor's Degree in Computer Science Taught by the Same Faculty as on Campus. Discover Opportunities to Make an Impact through Research and Special..

Sponsored

Purdue Globa

https://onlinedegrees.purdue.edu > computerscience > degree :

Purdue Global Online | Computer Science Degrees

Shape Your Future With an Online Computer Science Bachelor's from Purdue Global. Affordable Tuition and Flexible Programs to Fit Your Lifestyle and Budget. Learn More

Sponsored

- Johns Hopkins University
- https://info.ep.jhu.edu > ihuonline > ihucompsci :

Online MS in Computer Science | Johns Hopkins Engineering

Complete your degree part-time & online while you work. Courses to fit your schedule. Increase your income-earning potential. Software developers are in high demand.

Sponsored

connect.northeastern.edu

https://connect.northeastern.edu > computer > engineering

My Past Life as a Research Scientist at a Tech Startup

My original task:

- Figure out how Google models ad click rates
	- Google originally sorted ads purely on expected cost per impression.
	- They said they have a model for ad click rates even with sparse data.
	- Slightly simplified sort:
		- (our bid) * (estimated ad click rate)
	- We were running a long tailed keyword campaign so ~everything controlled by their model.

My Past Life as a Research Scientist at a Tech Startup

My original task:

Figure out how Google models ad click rates

- Google originally sorted ads purely on expected cost per impression.
- They said they have a model for ad click rates even with sparse data.
- **Slightly simplified sort:**
	- our bid * estimated ad click rate

We were running a long tailed keyword campaign so ~everything controlled by their model.

- Predict our expect revenue if someone clicks on a particular keyword
	- Use this to control our bidding.
	- We started with simple strategies like "bid 50% of our expected revenue"
	- BTW we have 100K keywords, only 1K have clicks

One of my coworkers observed the following…

• The clicks that we get on our ads are surprisingly linear in our cost per click.

- The clicks that we get on our ads are surprisingly linear in our cost per click.
	- \circ Clicks ∞ cost per click
	- \circ Revenue ∞ cost per click
	- \circ Cost ∞ (cost per click)²

- The clicks that we get on our ads are surprisingly linear in our cost per click.
	- \circ Clicks ∞ cost per click
	- \circ Revenue ∞ cost per click
	- \circ Cost ∞ (cost per click)²
- We can solve for max profit!
	- Simple analytical solution
	- Bid up to 50% margins
	- \circ So (cost per click) = $\frac{1}{2}$ (revenue per click)

- The clicks that we get on our ads are surprisingly linear in our cost per click.
	- \circ Clicks ∞ cost per click
	- \circ Revenue ∞ cost per click
	- \circ Cost ∞ (cost per click)²
- We can solve for max profit!
	- Simple analytical solution
	- Bid up to 50% margins
	- \circ So (cost per click) = $\frac{1}{2}$ (revenue per click)
- If we bid differently,
	- Profit drops quadratically from optimal point.

- We can solve for max profit!
	- Simple analytical solution
	- Bid up to 50% margins
	- \circ So (cost per click) = $\frac{1}{2}$ (revenue per click)
- If we bid differently,
	- Profit drops quadratically from optimal point.
	- o This is an L_2 loss!

- We can solve for max profit!
	- Simple analytical solution
	- Bid up to 50% margins
	- \circ So (cost per click) = $\frac{1}{2}$ (revenue per click)
- If we bid differently,
	- Profit drops quadratically from optimal point.
	- o This is an L_2 loss!
- In practice, we bid to 40% margins.
	- 96% of optimal profit
	- 20% more data (improve per-keyword bids)

Returning to the modern day...

So far, we thought about fitting a model to the data…

Alternatively, we can think about fitting a *probability model* to the data.

$Pr(y|x)$

Why?

Alternatively, we can think about fitting a *probability model* to the data.

$$
Pr(y|x)
$$

Why?

Because this provides a *framework* to build loss functions for other prediction types…

Alternatively, we can think about fitting a *probability model* to the data.

$$
Pr(y|x)
$$

Why?

Because this provides a *framework* to build loss functions for other prediction types…

… and justifies least squares for real-valued regression models.

Brief Probability Review

- Random variables, e.g. x and y
- $Pr(x)$ is a probability distribution over x
- $\cdot 0 \leq Pr(x) \leq 1$
- $\int_{\mathcal{X}} \Pr(x) dx = 1$ or $\sum_{i} \Pr(x_i) = 1$
- $Pr(x, y) = Pr(x) \cdot Pr(y)$ when x and y are independent
- $Pr(x | y) Pr(y) = Pr(x, y) = Pr(y | x) Pr(x)$
- \bullet And...

Joint and Marginal Probability Distributions

Conditional Probabilities

Loss function

● Training dataset of *I* pairs of input/output examples:

$$
\{{\mathbf x}_i, {\mathbf y}_i\}_{i=1}^I
$$

●Loss function or cost function measures how bad model is:

$$
L[\boldsymbol{\phi}, f[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I]
$$

model train data

Loss function

● Training dataset of *I* pairs of input/output examples:

$$
\{{\mathbf x}_i, {\mathbf y}_i\}_{i=1}^I
$$

●Loss function or cost function measures how bad model is:

or for short:

 $L[\phi]$

Returns a scalar that is smaller when model maps inputs to outputs better

Training

●Loss function:

 $L[\phi]$ +

● Find the parameters that minimize the loss:

Returns a scalar that is smaller when model maps inputs to outputs better

$$
\hat{\bm{\phi}} = \operatornamewithlimits{argmin}_{\bm{\phi}} \Bigl[\mathrm{L} \left[\bm{\phi} \right] \Bigr]
$$

Example: 1D Linear regression loss function

Loss function:

$$
L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2
$$

=
$$
\sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2
$$

"Least squares loss function"

Example: 1D Linear regression training

This technique is known as gradient descent

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

Maximum Likelihood Estimation

- In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.
- This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

Maximum Likelihood Estimation

- In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.
- This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

- Does not take into account prior beliefs or likelihoods of particular parameter settings.
- Won't talk (much) about Bayesian improvements.

How do we do this?

• Model predicts output y given input x

How do we do this?

Model predicts output y given input x

How do we do this?

- **Model predicts output y given input x**
- Model predicts a conditional probability distribution:

$Pr(\mathbf{y}|\mathbf{x})$

over outputs y given inputs x.

• Define and minimize a loss function that makes the outputs have high probability

How can a model predict a probability distribution? Parametric Models

1. Pick a known distribution (e.g., normal distribution) to model output y with parameters ρ

e.g., the normal distribution

2. Use model to predict parameters $\boldsymbol{\beta}$ of probability distribution

Maximize the joint, conditional probability

• We know we picked a good model and the right parameters when the joint conditional probability is high for the observed (e.g. training) data.

$Pr(y_1, y_2, ..., y_l | x_1, x_2, ..., x_l)$

Two simplifying assumptions

Identically distributed (the form of the probably distribution is the same for each input/output pair)

Maximum likelihood criterion

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{x}_i) \right]
$$
\n
$$
\theta_i
$$
\n
$$
= \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \theta_i) \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{f} | \mathbf{x}_i, \phi) \right]
$$
\n
$$
\phi
$$
\n<math display="block</math>

When we consider this probability as a function of the parameters ϕ , we call it a likelihood.

Problem:

$$
\hat{\boldsymbol{\phi}} = \operatorname*{argmax}_{\boldsymbol{\phi}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right]
$$

- The terms in this product might all be small
- The product might get so small that we *can't* easily represent it in fixed precision arithmetic

Log and exp functions

• Two rules:

$$
\log[\exp[z]] = z \qquad \log[a \cdot b] = \log[a] + \log[b]
$$

The log function is monotonic

Maximum of the logarithm of a function is in the same place as maximum of function

Maximum log likelihood

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right]
$$

$$
= \underset{\phi}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{I} Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]
$$

$$
= \underset{\phi}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]
$$

Now it's a sum of terms, so doesn't matter so much if the terms are small

Minimizing negative log likelihood

● By convention, we minimize things (i.e., a loss)

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]
$$

$$
= \underset{\phi}{\operatorname{argmin}} \left[- \sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]
$$

$$
= \underset{\phi}{\operatorname{argmin}} \left[\mathcal{L}[\phi] \right]
$$

Inference

But now we predict a probability distribution

- •We need an actual prediction (point estimate)
- Find the peak of the probability distribution (i.e., mean for normal)

$$
\hat{y} = \hat{\mu} = \underset{y}{\operatorname{argmax}}[\Pr(y | f[x, \phi])]]
$$

Why Peak Probability?

- We started from maximum likelihood...
	- Picked parameters maximizing likelihood of training data
	- Now pick maximum likelihood output given our input data.
- Aligns with mean and median for normal distributions.

Not always the right answer if we are not starting from maximum likelihood.

- If you start from your own loss function...
- And particularly if that loss function is asymmetric...

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

Recipe for loss functions

1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .

Recipe for loss functions

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]).$

 \sim
Recipe for loss functions

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]).$
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[L[\phi] \right] = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]. \tag{5.7}
$$

Recipe for loss functions

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\theta = f(x, \phi)$ and $Pr(y|\theta) = Pr(y|f(x, \phi))$.
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[L[\phi] \right] = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]. \tag{5.7}
$$

4. To perform inference for a new test example **x**, return either the full distribution $Pr(y|f[x, \hat{\phi})$ or the maximum of this distribution.

Let's apply this recipe to

- Example 1: Real valued univariate regression
- Example 2: Binary Classification
- Example 3: Multiclass Classification

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .
- \bullet Predict scalar output: $y \in \mathbb{R}$
- Sensible probability distribution:

○ Normal distribution

$$
Pr(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]
$$

2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]).$

3. To train the model, find the network parameters ϕ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$
L[\phi] = -\sum_{i=1}^{I} \log \left[Pr(y_i | f[x_i, \phi], \sigma^2) \right]
$$

=
$$
-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[x_i, \phi])^2}{2\sigma^2} \right] \right]
$$

$$
\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathrm{f}[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]
$$

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$

= $\underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]$

$\log[a \cdot b] = \log[a] + \log[b]$

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$

\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$

\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$

$$
\hat{\phi} = \underset{\phi}{\text{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$
\n
$$
= \underset{\phi}{\text{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$
\n
$$
= \underset{\phi}{\text{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$
\n
$$
= \underset{\phi}{\text{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$
\nJust dividing by a
\npositive constant

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] + \log \left[\exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]
$$
\n
$$
= \underset{\phi}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2 \right], \qquad \text{Least}
$$

Least squares Megative log likelihood

$a)$ _{2.0} $-\sum_i \log\left[Pr(y_i|\mathsf{f}[x_i,\phi],\sigma^2\right]=-6.57$ $\sum_i (y_i - {\mathsf{f}}[x_i,\phi])^2 = 0.19$ $c)$ _{2.0} \bigcirc Output, y Output, y $f(x, \phi)$ Ω $Pr(y_i | \mathbf{f}[1.19, \phi], \sigma^2)$ $Pr(y_i \in [0.46, \phi], \sigma^2)$ 0.0 0.0 0.0 0.0 1.0 $2x$ 2.0 1.0 Input, x Input, x

4. To perform inference for a new test example x, return either the full distribution $Pr(\mathbf{y}|\mathbf{f}|\mathbf{x},\hat{\boldsymbol{\phi}})$ or the maximum of this distribution.

Full distribution:
\n
$$
Pr(y|f[x, \phi], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - f[x, \phi])^2}{2\sigma^2}\right]
$$
\n
$$
\text{Max probability:}
$$
\n
$$
\hat{y} = \hat{\mu} = f[x | \phi]
$$

 V

Estimating variance

● Perhaps surprisingly, the variance term disappeared:

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$

$$
= \underset{\phi}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - f[\mathbf{x}_i, \phi])^2 \right]
$$

Estimating variance

• But we could learn it during training:

$$
\hat{\phi}, \hat{\sigma}^2 = \underset{\phi, \sigma^2}{\text{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]
$$

• Do gradient descent on both model parameters, ϕ , and the variance, σ^2

$$
\frac{\partial L}{\partial \phi} \text{ and } \frac{\partial L}{\partial \sigma^2}
$$

Heteroscedastic regression

- We were assuming that the noise σ^2 is the same everywhere (homoscedastic).
- But we could make the noise a function of the data x.
- Build a model with two outputs:

$$
\mu = f_1[\mathbf{x}, \phi]
$$

$$
\sigma^2 = f_2[\mathbf{x}, \phi]^2
$$

$$
\hat{\phi} = \operatorname{argmin}_{\phi} \left[-\sum_{i=1}^I \log \left[\frac{1}{\sqrt{2\pi f_2[\mathbf{x}_i, \phi]^2}} \right] - \frac{(y_i - f_1[\mathbf{x}_i, \phi])^2}{2f_2[\mathbf{x}_i, \phi]^2} \right]
$$

Heteroscedastic regression

Example 1: Univariate Regression Takeaways

- Least squares loss is a good choice assuming normal distribution
- The best prediction is the predicted mean
- We can also estimate global or local variance

Example 1: Univariate Regression Takeaways

- Least squares loss is a good choice assuming normal distribution
- The best prediction is the predicted mean
- We can also estimate global or local variance

BTW the Central Limit Theorem suggests we will see lots of normal distributions…

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

• Goal: predict which of two classes $y \in \{0, 1\}$ the input *x* belongs to

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .
- Domain: $y \in \{0, 1\}$
- Bernoulli distribution
- One parameter $\lambda \in [0,1]$

$$
Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0 \\ \lambda & y = 1 \end{cases}
$$

 $Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^y$

2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\theta = f(x, \phi)$ and $Pr(y|\theta) = Pr(y|f(x, \phi))$.

Problem:

- Output of neural network can be anything
- Parameter $\lambda \in [0,1]$

Solution:

• Pass through function that maps "anything" to $[0,1]$

2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\theta = f(x, \phi)$ and $Pr(y|\theta) = Pr(y|f(x, \phi))$.

Oroblem:

- Output of neural network can be anything
- Parameter $\lambda \in [0,1]$

Solution:

• Pass through logistic sigmoid function that maps "anything to $[0,1]$:

$$
sig[z] = \frac{1}{1 + exp[-z]}
$$

2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\theta = f(x, \phi)$ and $Pr(y|\theta) = Pr(y|f(x, \phi))$.

$$
Pr(y|\lambda) = (1 - \lambda)^{1 - y} \cdot \lambda^y
$$

$$
Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]]^{y}
$$

3. To train the model, find the network parameters ϕ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[L[\phi] \right] = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]. \tag{5.7}
$$

$$
Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}|\boldsymbol{\phi}]]^{y}
$$

 $L[\boldsymbol{\phi}] = \sum_{i} L\left[1 - y_i\right] \log\left[1 - \text{sig}[f[\mathbf{x}_i|\boldsymbol{\phi}]]\right] - y_i \log\left[\text{sig}[f[\mathbf{x}_i|\boldsymbol{\phi}]]\right]$

Binary cross-entropy loss

4. To perform inference for a new test example **x**, return either the full distribution $Pr(\mathbf{y} | \mathbf{f} | \mathbf{x}, \hat{\boldsymbol{\phi}})$ or the maximum of this distribution.

Choose y=1 where λ is greater than 0.5, otherwise 0 And we get a probability estimate!

Example 2: Binary Classification Takeaways

- Binary cross entropy loss as the loss function
- Threshold to get prediction
- We also get a probability or "confidence value"

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

Example 3: multiclass classification

Goal: predict which of K classes $y \in \{1, 2, ..., K\}$ the input *x* belongs to
- 1. Choose a suitable probability distribution $Pr(y|\theta)$ that is defined over the domain of the predictions y and has distribution parameters θ .
- Domain: $y \in \{1, 2, ..., K\}$
- Categorical distribution
- K parameters $\lambda_k \in [0,1]$
- Sum of all parameters = 1

$$
Pr(y=k) = \lambda_k
$$

2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\theta = f(x, \phi)$ and $Pr(y|\theta) = Pr(y|f(x, \phi))$.

Problem:

- Output of neural network can be anything
- Parameters $\lambda_k \in [0,1]$, sum to one

Solution:

• Pass through function that maps "anything" to $[0,1]$, sum to one

$$
Pr(y = k|\mathbf{x}) = \mathrm{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]
$$

$$
\text{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_k]}{\sum_{k'=1}^{K} \exp[z_{k'}]}
$$

 $Pr(y = k|\mathbf{x}) = \text{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]$

3. To train the model, find the network parameters ϕ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$
\hat{\phi} = \operatorname*{argmin}_{\phi} [L[\phi]] = \operatorname*{argmin}_{\phi} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \phi]) \right] \right]. \tag{5.7}
$$
\n
$$
L[\phi] = -\sum_{i=1}^{I} \log \left[\operatorname{softmax}_{y_i} [\mathbf{f}[\mathbf{x}_i, \phi]] \right] \qquad \qquad \text{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_k]}{\sum_{k'=1}^{K} \exp[z_{k'}]} \\
= -\sum_{i=1}^{I} f_{y_i} [\mathbf{x}_i, \phi] - \log \left[\sum_{k=1}^{K} \exp \left[f_k [\mathbf{x}_i, \phi] \right] \right]
$$

Multiclass cross-entropy loss

4. To perform inference for a new test example **x**, return either the full distribution $Pr(\mathbf{y}|\mathbf{f}|\mathbf{x},\hat{\boldsymbol{\phi}})$ or the maximum of this distribution.

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

Other data types

Figure 5.11 Distributions for loss functions for different prediction types.

Other Distributions

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

Multiple outputs

• Treat each output y_d as independent:

$$
Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) = \prod_d Pr(y_d|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}])
$$

● Negative log likelihood becomes sum of terms:

$$
L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \Bigl[Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \Bigr] = -\sum_{i=1}^{I} \sum_{d} \log \Bigl[Pr(y_{id}|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}]) \Bigr]
$$

Example 4: multivariate regression

Example 4: multivariate regression

- Goal: to predict a multivariate target $y \in \mathbb{R}^{D_o}$
- Solution treat each dimension independently

$$
Pr(\mathbf{y}|\boldsymbol{\mu}, \sigma^2) = \prod_{d=1}^{D_o} Pr(y_d | \mu_d, \sigma^2)
$$

=
$$
\prod_{d=1}^{D_o} \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(y_d - \mu_d)^2}{2\sigma^2} \right]
$$

• Make network with D_o outputs to predict means

$$
Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \prod_{d=1}^{D_o} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_d - f_d[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right]
$$

Example 4: multivariate regression

- What if the outputs vary in magnitude
	- E.g., predict weight in kilos and height in meters
	- One dimension has much bigger numbers than others
- Could learn a separate variance for each...
- ...or rescale before training, and then rescale output in opposite way

Loss functions

- Maximum likelihood
- Recipe for loss functions
- Example 1: univariate regression
- Example 2: binary classification
- Example 3: multiclass classification
- Other types of data
- Multiple outputs
- Cross entropy

Information Theory and Entropy

- **● Claude Shannon:** the "father of information theory," was an American mathematician, electrical engineer, and cryptographer
- **● Theory of Communication:** In his landmark 1948 paper, "A Mathematical Theory of Communication," Shannon introduced a formal framework for the transmission, processing, and storage of information.
- **● Information Theory:** Quantified information, allowing for the measurement of information content in messages, which is crucial for data compression, error detection and correction, and more.
- **● Concept of Information Entropy:** introduced entropy as a measure of the uncertainty or randomness in a set of possible messages, providing a limit on the best possible lossless compression of any communication.

$$
H(x) = -\sum_{x} P(x) \log_2(P(x))
$$

123

The Mathematical Theory Of Communication

> By CLAUDE E. SHANNON and WARREN WEAVER

THE UNIVERSITY OF ILLINOIS PRESS: URBANA 1949

$x \in \{0,1\}$ Entropy for a Binary Event

 $H(x) = -\sum_{x} P(x) \log_2(P(x)) = -p \log_2(p) - (1-p) \log_2(1-p)$

Cross Entropy – Concept from Information Theory

Measures the difference between two probability distributions: the true distribution of the labels and the predicted distribution of the labels by a model.

Kullback-Leibler Divergence -- a measure between probability distributions

Cross Entropy – Concept from Information Theory

• For discrete distributions, the cross-entropy between two distributions p and q over the same underlying set of events is defined as:

$$
H(p,q) = -\sum p(x) \log q(x)
$$

Here, $p(x)$ is the true probability of an event x, and $q(x)$ is the estimated probability of the same event according to the model.

For instance, in binary classification:

$$
H(p,q) = -[y \log(\hat{y}) + (1-y) \log(\mathbf{1}_{6} - \hat{y})
$$

Here, y is the true label (0 or 1), and \hat{y} is the predicted probability of the class being 1.

Recap

- Reconsidered loss functions as fitting a parametric probability model
- Introduced Maximum Likelihood criterion for finding parameters to making the training data most probably under that model
- Introduced a 4-step recipe for (1) picking a suitable parametric probability distribution, (2) defining the model to pick one or more of the parameters, (3) training the model and (4) doing inference
- Derived loss functions for univariate regression, binary and multiclass classification
- Briefly reviewed parametric probability models for other types of data
- Discussed how this is the same as Cross Entropy from Information Theory

Minimizing Negative Log Likelihood

$$
\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log[\Pr(y_i | f[x_i, \phi])]\right]
$$

$$
= \underset{\phi}{\operatorname{argmin}} [L[\phi]]
$$

Recipe for loss functions

- Choose a suitable probability distribution $Pr(\mathbf{y}|\boldsymbol{\theta})$ that is defined over 1. the domain of the predictions y and has distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters so $\theta = f[x, \phi]$ and $Pr(y | f[x, \phi])$.
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{X_i, Y_i\}$:

$$
\hat{\phi} = \underset{\phi}{\text{argmin}} [L[\phi]] = \underset{\phi}{\text{argmin}} \left[-\sum_{i=1}^{I} \log[\Pr(y_i | f[x_i, \phi])]\right]
$$

4. To perform inference for a new test example x, return either the full distribution $Pr(y | f[x, \phi])$ or the maximum of this distribution.

Next up

- Now let's find the parameters that give the smallest loss
	- Training the model

Feedback?

