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We need to find a loss function that works with…
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Univariate and Multivariate Regression

Depth 
Map
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Binary Classification
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Multiclass Classification
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But First, A Digression…

● The book gives a unique, theoretically grounded approach to picking loss 
functions.

● Will defer that five minutes to talk about an example from my industry 
experience.



A long time ago in an internet far, far away…
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● Advertisers were starting to move beyond banner ads to monetize the Internet
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Circa 2005

● Advertisers were starting to move beyond banner ads to monetize the Internet
● Search engines just starting to sell ads

○ Not this many yet
○ Unknown dynamics

(if you did not work at Yahoo or Google)
● Big questions

○ How to advertise effectively here?
○ What keywords to advertise on?
○ How much to bid?



My Past Life as a Research Scientist at a Tech Startup

My original task:

● Figure out how Google models ad click rates
○ Google originally sorted ads purely on expected cost per impression.
○ They said they have a model for ad click rates even with sparse data.
○ Slightly simplified sort:

■ (our bid) * (estimated ad click rate)
○ We were running a long tailed keyword campaign so ~everything controlled by their model.



My Past Life as a Research Scientist at a Tech Startup

My original task:

● Figure out how Google models ad click rates
○ Google originally sorted ads purely on expected cost per impression.
○ They said they have a model for ad click rates even with sparse data.
○ Slightly simplified sort:

■ our bid * estimated ad click rate
○ We were running a long tailed keyword campaign so ~everything controlled by their model.

● Predict our expect revenue if someone clicks on a particular keyword
○ Use this to control our bidding.
○ We started with simple strategies like “bid 50% of our expected revenue”
○ BTW we have 100K keywords, only 1K have clicks
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The Linear Traffic Curve Model (RIP 2009)

One of my coworkers observed the following…

● We can solve for max profit!
○ Simple analytical solution
○ Bid up to 50% margins
○ So (cost per click) = ½ (revenue per click)

● If we bid differently,
○ Profit drops quadratically from optimal point.
○ This is an L2 loss!

● In practice, we bid to 40% margins.
○ 96% of optimal profit
○ 20% more data (improve per-keyword bids)



Returning to the modern day…



So far, we thought about 
fitting a model to the data…
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prediction types…



 

Why?

Because this provides a framework 
to build loss functions for other 
prediction types…

… and justifies least squares for 
real-valued regression models.



Brief Probability Review
 



Joint and Marginal Probability Distributions

Joint Distribution
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Loss function
● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad model is:

   or for short:



Loss function
● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad model is:

   or for short:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Training
● Loss function:

● Find the parameters that minimize the loss:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Example:  1D Linear regression loss function

Loss function:

“Least squares loss function”



Example: 1D Linear regression training

This technique is known as gradient descent



Loss functions
● Maximum likelihood

● Recipe for loss functions

● Example 1:  univariate regression

● Example 2:  binary classification

● Example 3:  multiclass classification

● Other types of data

● Multiple outputs

● Cross entropy



Maximum Likelihood Estimation
● In statistics, maximum likelihood estimation (MLE) is a method of estimating 

the parameters of an assumed probability distribution, given some observed 
data. 

● This is achieved by maximizing a likelihood function so that, under the 
assumed statistical model, the observed data is most probable.



Maximum Likelihood Estimation
● In statistics, maximum likelihood estimation (MLE) is a method of estimating 

the parameters of an assumed probability distribution, given some observed 
data. 

● This is achieved by maximizing a likelihood function so that, under the 
assumed statistical model, the observed data is most probable.

● Does not take into account prior beliefs or likelihoods of particular parameter 
settings.

● Won’t talk (much) about Bayesian improvements.
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How do we do this?
● Model predicts output y given input x
● Model predicts a conditional probability distribution:

       over outputs y given inputs x.

● Define and minimize a loss function that makes the outputs have high 
probability



How can a model predict a probability distribution? 
Parametric Models

1. Pick a known distribution (e.g., normal distribution) to model output y with 
parameters 
e.g., the normal distribution

2.  Use model to predict parameters    of probability distribution



Maximize the joint, conditional probability
● We know we picked a good model and the right parameters when the joint 

conditional probability is high for the observed (e.g. training) data.

 



Two simplifying assumptions

 

Identically distributed (the form of 
the probably distribution is the same 
for each input/output pair)

Independent 

Independent and identically distributed (i.i.d)



Maximum likelihood criterion

 

 

 

 



Problem:

● The terms in this product might all be small

● The product might get so small that we can’t easily represent it in fixed 
precision arithmetic



Log and exp functions

● Log • Exp

• Two rules:

 

0



The log function is monotonic

Maximum of the logarithm of a function is in the same place as maximum of function 



Maximum log likelihood

Now it’s a sum of terms, so doesn’t matter so much if the terms are small 



Minimizing negative log likelihood

● By convention, we minimize things (i.e., a loss)



 But now we predict a probability distribution

• We need an actual prediction (point estimate)

• Find the peak of the probability distribution (i.e., mean for normal)

Inference

 



Why Peak Probability?

● We started from maximum likelihood…
○ Picked parameters maximizing likelihood of training data
○ Now pick maximum likelihood output given our input data.

● Aligns with mean and median for normal distributions.

Not always the right answer if we are not starting from maximum likelihood.

● If you start from your own loss function…
● And particularly if that loss function is asymmetric…



Loss functions
● Maximum likelihood
● Recipe for loss functions
● Example 1:  univariate regression
● Example 2:  binary classification
● Example 3:  multiclass classification
● Other types of data
● Multiple outputs
● Cross entropy
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Let’s apply this recipe to
● Example 1: Real valued univariate regression

● Example 2: Binary Classification

● Example 3: Multiclass Classification
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Example 1: univariate regression



Example 1:  univariate regression

● Predict scalar output:

● Sensible probability distribution: 
○ Normal distribution



Example 1:  univariate regression

In this case, 
just the mean

 



Example 1:  univariate regression









Just a constant 
offset





Just dividing by a 
positive constant



Least 
squares!



Least squares Negative log likelihood



Least squares Maximum likelihood



Example 1:  univariate regression

 

Full distribution:

Max probability:



Estimating variance

● Perhaps surprisingly, the variance term disappeared:



Estimating variance

●  

 



Heteroscedastic regression
●  



Heteroscedastic regression



Example 1: Univariate Regression Takeaways
● Least squares loss is a good choice assuming normal distribution
● The best prediction is the predicted mean
● We can also estimate global or local variance



Example 1: Univariate Regression Takeaways
● Least squares loss is a good choice assuming normal distribution
● The best prediction is the predicted mean
● We can also estimate global or local variance

BTW the Central Limit Theorem suggests we will see lots of normal distributions…



Loss functions
● Maximum likelihood
● Recipe for loss functions
● Example 1:  univariate regression
● Example 2:  binary classification
● Example 3:  multiclass classification
● Other types of data
● Multiple outputs
● Cross entropy



Example 2: binary classification

● Goal: predict which of two classes                     the input x belongs to



Example 2: binary classification

●  



Example 2: binary classification

 



Example 2: binary classification

●  



Example 2: binary classification
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Example 2: binary classification

*Binary cross-entropy loss*



Example 2: binary classification

 



Example 2: Binary Classification Takeaways
● Binary cross entropy loss as the loss function
● Threshold to get prediction
● We also get a probability or “confidence value”
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Loss functions
● Maximum likelihood
● Recipe for loss functions
● Example 1:  univariate regression
● Example 2:  binary classification
● Example 3:  multiclass classification
● Other types of data
● Multiple outputs
● Cross entropy



Example 3: multiclass classification

Goal: predict which of K classes                               the input x belongs to



Example 3: multiclass classification 

 



Example 3: multiclass classification 

 



Example 3: multiclass classification



Example 3:  multiclass classification

*Multiclass cross-entropy loss*



Example 3:  multiclass classification

Choose the class with the largest probability
We also get probability or “confidence”



Loss functions
● Maximum likelihood
● Recipe for loss functions
● Example 1:  univariate regression
● Example 2:  binary classification
● Example 3:  multiclass classification
● Other types of data
● Multiple outputs
● Cross entropy



Other 
data types
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Other Distributions

    

   

Gaussian Laplace Mixture of Gaussians Gamm
a

Beta Von Mises Poisson
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Loss functions
● Maximum likelihood
● Recipe for loss functions
● Example 1:  univariate regression
● Example 2:  binary classification
● Example 3:  multiclass classification
● Other types of data
● Multiple outputs
● Cross entropy
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Multiple outputs
● Treat each output        as independent:

● Negative log likelihood becomes sum of terms:
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Example 4: multivariate regression
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Example 4: multivariate regression
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Example 4: multivariate regression
● What if the outputs vary in magnitude

○ E.g., predict weight in kilos and height in meters
○ One dimension has much bigger numbers than others

● Could learn a separate variance for each…
● …or rescale before training, and then rescale output in opposite way
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Loss functions
● Maximum likelihood
● Recipe for loss functions
● Example 1:  univariate regression
● Example 2:  binary classification
● Example 3:  multiclass classification
● Other types of data
● Multiple outputs
● Cross entropy
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Information Theory and Entropy
● Claude Shannon: the "father of information theory," 

was an American mathematician, electrical engineer, 
and cryptographer

● Theory of Communication: In his landmark 1948 
paper, "A Mathematical Theory of Communication," 
Shannon introduced a formal framework for the 
transmission, processing, and storage of information.

● Information Theory: Quantified information, allowing 
for the measurement of information content in 
messages, which is crucial for data compression, 
error detection and correction, and more.

● Concept of Information Entropy: introduced 
entropy as a measure of the uncertainty or 
randomness in a set of possible messages, providing 
a limit on the best possible lossless compression of 
any communication.
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Entropy for a Binary Event
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Cross Entropy – Concept from Information Theory

Kullback-Leibler Divergence -- a measure between probability distributions

125

Measures the difference between two probability distributions: the true distribution of the labels and 
the predicted distribution of the labels by a model.



Cross Entropy – Concept from Information Theory
●  
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Recap
● Reconsidered loss functions as fitting a parametric probability model
● Introduced Maximum Likelihood criterion for finding parameters to making the 

training data most probably under that model
● Introduced a 4-step recipe for (1) picking a suitable parametric probability 

distribution, (2) defining the model to pick one or more of the parameters, (3) 
training the model and (4) doing inference

● Derived loss functions for univariate regression, binary and multiclass 
classification

● Briefly reviewed parametric probability models for other types of data
● Discussed how this is the same as Cross Entropy from Information Theory
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Minimizing Negative Log Likelihood
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Recipe for loss functions
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Next up
● Now let’s find the parameters that give the smallest loss

○ Training the model
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Feedback?


